Epidermal Deletion of Hif-2α Stimulates Wound Closure
نویسندگان
چکیده
Wound closure requires a complex series of micro-environmentally influenced events. A key aspect of wound closure is the migration of keratinocytes across the open wound. It has been found previously that the response to hypoxia via the HIF-1α transcription factor is a key feature of wound closure. The need for hypoxic response is likely due to interrupted wound vasculature, as well as infection, and in this work we investigated the need for a highly related hypoxic response transcription factor, HIF-2α. This factor was deleted tissue specifically in mice, and the resulting mice were found to have an accelerated rate of wound closure. This is correlated with a reduced bacterial load and inflammatory response in these mice. This indicates that manipulating or reducing the HIF-2α response in keratinocytes could be a useful means to accelerate wound healing and tissue repair.
منابع مشابه
Epidermal Deletion of HIF-2a Stimulates Wound Closure
Wound closure requires a complex series of micro-environmentally influenced events. A key aspect of wound closure is the migration of keratinocytes across the open wound. It has been found previously that the response to hypoxia via the HIF-1a transcription factor is a key feature of wound closure. The need for hypoxic response is likely due to interrupted wound vasculature, as well as infectio...
متن کاملHypoxic Signaling During Tissue Repair and Regenerative Medicine
In patients with chronic wounds, autologous tissue repair is often not sufficient to heal the wound. These patients might benefit from regenerative medicine or the implantation of a tissue-engineered scaffold. Both wound healing and tissue engineering is dependent on the formation of a microvascular network. This process is highly regulated by hypoxia and the transcription factors hypoxia-induc...
متن کاملHif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance
Leukemogenesis occurs under hypoxic conditions within the bone marrow (BM). Knockdown of key mediators of cellular responses to hypoxia with shRNA, namely hypoxia-inducible factor-1α (HIF-1α) or HIF-2α, in human acute myeloid leukemia (AML) samples results in their apoptosis and inability to engraft, implicating HIF-1α or HIF-2α as therapeutic targets. However, genetic deletion of Hif-1α has no...
متن کاملEpigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth
In soft tissue sarcomas (STS), low intratumoural O2 (hypoxia) is a poor prognostic indicator. HIF-1α mediates key transcriptional responses to hypoxia, and promotes STS metastasis; however, the role of the related HIF-2α protein is unknown. Surprisingly, here we show that HIF-2α inhibits high-grade STS cell growth in vivo, as loss of HIF-2α promotes sarcoma proliferation and increases calcium a...
متن کاملHif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance.
Local hypoxia in hematopoietic stem cell (HSC) niches is thought to regulate HSC functions. Hypoxia-inducible factor-1 (Hif-1) and Hif-2 are key mediators of cellular responses to hypoxia. Although oxygen-regulated α-subunits of Hifs, namely Hif-1α and Hif-2α, are closely related, they play overlapping and also distinct functions in nonhematopoietic tissues. Although Hif-1α-deficient HSCs lose ...
متن کامل